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Who’s Afraid of Maxwell’s 
Equations?

WhoWho’’s Afraid of Maxwells Afraid of Maxwell’’s s 
Equations?Equations?

“From a long view of the history of 
mankind - seen from, say, ten 
thousand years from now - there can 
be little doubt that the most 
significant event of the 19th century 
will be judged as Maxwell's discovery 
of the laws of electrodynamics”

(Richard P. Feynman)

“Maxwell can be justifiably placed with Einstein and Newton 
in a triad of the greatest physicists known to history”

(Ivan Tolstoy, Biographer) 

The special theory of relativity owes 
its origins to Maxwell's equations of 
the electromagnetic field 

(Albert Einstein) 
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In the beginning…In the beginningIn the beginning……

• In the beginning, God created the Heaven 
and the Earth …

• … and God Said:
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• And there was light!



IntroductionIntroduction

• Electromagnetics can be scary
– Universities LOVE messy math

• EM is not difficult, unless you want to do the 
messy math
– EM is complex but not complicated

• Objectives:
– Intuitive understanding
– Understand the basic fundamentals 
– Understand how to read the math
– See “real life” applications



“May the Force be with You…”“May the Force be with You…”
• Imagine, just imagine…

– A force like gravitation, but ª 1036 stronger
– Two kinds of matter: “positive” and “negative”
– Like kinds repel and unlike kinds attract…

• There is such a force: Electrical force
– For static charges (Coulomb’s Law)
– With a little imbalance between electrons and protons in the 

body of a person – “the force” could lift the Earth
• When charges are in motion, another force occurs: 

Magnetic force
• Lorenz's Law:
• Superposition of fields:

 F q E v B  
   
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“May the Force be with You…”“May the Force be with You…”
• When current flows through a wire and a 

magnet is moved near the current-carrying 
wire, the wire will move due to force exerted 
by the magnet
– Current = movement of charges
– Magnetic fields interact with moving charges

 MF q v B 
  

�

The force is with you…



“May the Force be with You…”“May the Force be with You…”
• Current in the wires exerts force on the 

magnet
– The magnetic force produced by the wire acts on the 

static magnet (same as the field produced by a 
magnet)

– Why does it not move?
• Make is light enough and it will 
• Try a needle of a compass (you may check this at home…)



“May the Force be with You…”“May the Force be with You…”
• Two wires carrying current exert forces on 

each other
– Each produces a magnetic field
– Each carries current on which the magnetic fields 

act

 F q E v B  
   

�



What’s All this Business about ‘them’ fields?What’s All this Business about ‘them’ fields?
• Fields: Abstract concepts, a figment of imagination…

– A quantity which depends on position in space
• e.g., temperature distribution, air pressure in space

 , , ,E E x y z t

– E and H fields are really tools to determine the force on 
charged particles, 

• Any charges: E-fields
• Moving charges: H-fields

– Represent the force exerted on a
charge assuming it does not disturb
(perturb) the position or motion of
nearby charges

• In general, fields vary and
are defined in space and time:



Scalar and Vector FieldsScalar and Vector Fields
• Fields can be scalar of vector fields

– Scalar fields are characterized at each 
point by one numberone number, a scalar and may be 
time-dependent

• e.g., T(x,y,z,t)
• Represented as contours

– Vector fields have, in addition to value, a a 
direction of flow and varies from point to direction of flow and varies from point to 
pointpoint

• e.g., flow of heat, velocity of a particle
• Represented by lines which are tangent to 

the direction of the field vector at each 
point

• The density of the lines is proportional 
to the magnitude of the field



Scalar and Vector FieldsScalar and Vector Fields
• Flux: A quality of “inflow” or “outflow”

from a volume
– e.g., flow of water from a lake into a river
– Flux = the net amount of (something) going

through a closed surface per unit time, or:

– Flux = Average component normal to surface ª surface area

• Circulation: The amount of rotational move,
or “swirl” around some loop
– e.g., flow of water in a whirlpool
– No physical curve need to exist, any

imaginary closed curve will suffice

– Circulation = Average component tangent to curve ª distance 
around curve

•• All electromagnetism laws are based on flux & circulationAll electromagnetism laws are based on flux & circulation



Basic Vector Calculus
The Del () Operator

Basic Vector Calculus
The Del () Operator

• In the 3D Cartesian coordinate system with 
coordinates (x, y, z), del () is defined in terms of 
partial derivative operators as:

– {i, j, k} is the standard basis in the coordinate system
– A shorthand form for “lazy mathematicians” to simplify many 

long mathematical expressions
– Useful in electromagnetics for the gradient, divergence, curl

and directional derivative
• Definition may be extended to an n-dimensional 

Euclidean space

 i j k
x y z
  

   
  




Basic Vector Calculus
The Gradient of f (Grad f)
Basic Vector Calculus
The Gradient of f (Grad f)

•• Grad fGrad f: The vector derivative of a scalar field f:

     ˆ , , , , f f fGrad f x y z f x y z i j k
x y z
  

    
  

– Always points in the direction of greatest 
increase of f

– Has a magnitude equal to the maximum 
rate of increase at the point

• If a hill is defined as a height function 
over a plane h(x,y), the 2d projection of 
the gradient at a given location will be a 
vector in the xy-plane pointing along the 
steepest direction with a magnitude equal 
to the value of this steepest slope



Basic Vector Calculus
The Divergence of f (Div f)
Basic Vector Calculus
The Divergence of f (Div f)

•• Div fDiv f: The scalar quantity obtained from a derivative 
of a vector field f:

    , , , , yx zff fDiv f x y z f x y z
x y z

 
    

  

 


– Roughly a measure of the extent a 
vector field behaves like a source or 
a sink at a given point

– More accurately a measure of the 
field's tendency to converge 
(“inflow”) on or repel (“outflow”) from 
a given volume

– If the divergence is nonzero at some 
point, then there must be a source or 
sink at that position



Basic Vector Calculus
The Curl of f (Curl f)

Basic Vector Calculus
The Curl of f (Curl f)

•• Curl fCurl f: The vector function obtained from a derivative 
of a vector field f:

• Specifically:

– Roughly a measure of a net 
circulation (or rotation) density of a 
vector field at any point about a 
contour, C

• The magnitude of the curl tells us 
how much rotation there is

• The direction tells us, by the right-
hand rule about which axis the field 
rotates

    ˆ, , y yx x xzf ff f fff x y z i j k
x y z x x y

                          





Vector IntegrationVector IntegrationVector Integration
• Simply the sum of parts (when the parts are 

very small)

– Line Integral: sum along small line segments
– Surface Integral: sum across small surface patches
• Volume Integral: sum through small volume cubes



Line Integral Line Integral Line Integral 

x
x

fff x x
x x


    

 


f

f

f

f C

   
(2)

(1)

2 1 ( )f f f ds   

• Finding the sum of projection of the function f along 
a curve, C

• In general:

• Note that the actual path from
(1) to (2) is irrelevant

f

f
C



Line Integral around a Closed 
Contour

Line Integral around a Closed Line Integral around a Closed 
ContourContour

• Closed line integrals find the sum of projection of the 
function f along the circumference of the curve, C

• This value is not-necessarily  zero

 along contour 
C

f C f ds  



Surface IntegralSurface IntegralSurface Integral
• Finding the sum of flux of the vector function flowing 

outward through and normal to surface, S

• In general:

• Note that n is the vector normal to the surface and the 
direction of the surface vector a

• Note: Outflow=Flux

f

fn
n

fff a a
a a


    

 


     )
S

Total outflow of f through S f da  

 nf f n a  



Volume IntegralVolume IntegralVolume Integral
• Finding a total quantity within a volume, V , given its 

distribution within the volume

• Note in practice this is typically
a scalar value

v
ff V
v


  


vf



Divergence (Gauss) theoremDivergence (Gauss) theoremDivergence (Gauss) theorem
• Volume integral of the divergence of a vector equals total outward 

flux of vector through the surface that bounds the volume

• The divergence theorem is thus a conservation law stating that the 
volume total of all sinks and sources, the volume integral of the 
divergence, is equal to the net flow across the volume's boundary
– Implying that for flux to occur from a volume there must be sources 

enclosed within the surface enclosing that volume
– The flux from the volume diminishes whatever was within that volume, 

if its conservation must occur

 dV d
V s

f f a  
 
  f

f
Flux flowing out of the 

surface, 

Closed surface, S

Source within 
Volume, V



Stokes’ theoremStokesStokes’’ theoremtheorem
• Surface integral of the curl of a vector field over an 

open surface is equal to the closed line integral of the 
vector along the contour bounding the surface

• Implying that certain sources create circulating flux in 
a plane perpendicular to the flow of the flux

  d d
S C

f a f s  
 
 

f

f



Curl-Free FieldsCurlCurl--Free FieldsFree Fields
• If everywhere in space                     it follows from 

Stokes’ theorem that the circulation must also be zero

• Therefore, regardless of the path:

• Therefore, the integral depends on position only

• The concept of potential is born!
• The field, f, must be a gradient of this potential,

• Thus…

0f 


  d d 0
S C

f a f s   
   
 

(2) (1)

(1) (2)

d df s f s  
   
 

  0V  
 , , ;  V=scalarf V x y z 





Maxwell’s Field EquationsMaxwell’s Field Equations



Maxwell’s Equations
Maxwell’s Equations in Differential and Integral 

Forms

Maxwell’s Equations
Maxwell’s Equations in Differential and Integral 

Forms
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Laws of Electromagnetism, 1Laws of Electromagnetism, 1Laws of Electromagnetism, 1
• Flux of E through a closed surface = net charge inside 

the volume

– If there are no charges inside the volume, no net charge can 
emerge out of it

– Adjacent charges will create flux, which enters and leaves the 
volume, producing zero net flux

E

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


na


E


E
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E
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No net flux

Net flux

Charge

No net flux

;  D D E   
  




Laws of Electromagnetism, 2Laws of Electromagnetism, 2Laws of Electromagnetism, 2
• Circulation of E around a closed curve = net 

change of B through the surface

– If there are no magnetic fields, or only static 
magnetic fields are present, the circulation is zero

– Only magnetic fields flowing through the surface 
will produce circulation

BE
t

  




B


B


E
dl



C
na


B

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

S

Magnetic field
outside surface

Magnetic field
through surface

“Going to the south and 
circling to the north the wind 
goes round and round; and 
the wind returns on its 
circuit”

(Ecclesiastes 1:6)

Faraday’s   Law



Laws of Electromagnetism, 3Laws of Electromagnetism, 3Laws of Electromagnetism, 3
• Flux of B through a closed surface = 0

– There are no magnetic charges
0B 




B


0B 



B
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 S        N



Laws of Electromagnetism, 4Laws of Electromagnetism, 4Laws of Electromagnetism, 4
• Circulation of B around a closed curve = net 

change of E or flux of current through surface

– Only net current or change of E-field through
surface produces
circulation of B 

;  D B HH J
t
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through Surface
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through Surface

“All the rivers flow to the sea, 
but the sea is not full”

(Ecclesiastes 1:7)

Ampere’s   Law

Current - I

Magnetic
Flux - B

Current, I

Magnetic Flux
Density, B



Electrostatics and MagnetostaticsElectrostatics and MagnetostaticsElectrostatics and Magnetostatics
• In electrostatics and magnetostatics, fields are 

invariant

• The equations appear to be decoupledappear to be decoupled
• E-field and H-field seem independentseem independent of each other
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Electrostatics
Electrical Scalar Potential

ElectrostaticsElectrostatics
Electrical Scalar PotentialElectrical Scalar Potential

• If                   we can define

– The (scalar) electrostatic potential
– The E-field can be computed everywhere from the potential

• The physical significance: The potential energypotential energy which a 
unit chargeunit charge would have if brought to a specified point 
(2) in space from some reference point (1):
– Work:

– independent of path taken, thus

0E 


- VE  

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Magnetostatics
Conservation of Charge
MagnetostaticsMagnetostatics

Conservation of ChargeConservation of Charge
• Current must always flow in closed loops:

• Taking the Divergence…

• But… so…

• In magnetostatics

so current must flow in closed loops!

• And…

•• Conservation of Charge:Conservation of Charge:
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Kirchhoff’s LawsKirchhoff’s Laws
• Kirchhoff’s Equations are approximationsapproximations

–– No timeNo time--varying fields (varying fields (D/D/t=0t=0, , B/B/t=0t=0))
–– Electrically small circuitsElectrically small circuits

 QuasiQuasi--static approximationsstatic approximations  applyapply

Conservation of DifficultyConservation of Difficulty: If it is difficult in : If it is difficult in 
MaxwellMaxwell’’s Equations, it will probably be s Equations, it will probably be 

difficult as an Kirchhoff'sdifficult as an Kirchhoff's--equivalent circuit, equivalent circuit, 
but perhaps more intuition will be gainedbut perhaps more intuition will be gained
““Things should be made as simple as Things should be made as simple as 

possible, but not any simpler possible, but not any simpler ““
(Albert Einstein)(Albert Einstein)



Kirchhoff’s Current Law (KCL)Kirchhoff’s Current Law (KCL)

• An approximation from Ampere’s Law
• When no timeno time--varying electric fieldsvarying electric fields are 

present (electrostatics)
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Kirchhoff’s Voltage Law (KVL)Kirchhoff’s Voltage Law (KVL)

• When no timeno time--varying magnetic fieldsvarying magnetic fields are 
present (magnetostatics) 0

C
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Maxwell’s Equations - Electrodynamics
Maxwell’s Equations in Differential and Integral 

Forms

Maxwell’s Equations - Electrodynamics
Maxwell’s Equations in Differential and Integral 

Forms
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Maxwell’s Equations - Electrodynamics
Something is Wrong Here… The Missing Link

Maxwell’s Equations - Electrodynamics
Something is Wrong Here… The Missing Link

• In the time-varying case, Maxwell initially considered the 
following 4 postulates:

• Or in integral form:

• But some things seemed wrong:
• What if the circuit contained a capacitor…?
• How could electromagnetic radiation occur?
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• Taking Divergence of (2)

• But from the null identity …
• This appears to be inconsistent with the principle of inconsistent with the principle of 

conservation of charge and the Equation of Continuity:conservation of charge and the Equation of Continuity:

•• Therefore, this equation had to be modifiedTherefore, this equation had to be modified……

• or

•• Hence J.C. Maxwell proposed to change (2) to:Hence J.C. Maxwell proposed to change (2) to:

( H) J   
 
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t
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t t
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(from Gauss Law)

Maxwell’s Equations - Electrodynamics
Something is Wrong Here… The Problem

Maxwell’s Equations - Electrodynamics
Something is Wrong Here… The Problem
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Maxwell’s Equations - Electrodynamics
Something is Wrong Here… Displacement Current..

Maxwell’s Equations - Electrodynamics
Something is Wrong Here… Displacement Current..

• Maxwell called the term        displacement current displacement current 
densitydensity
– showing that a time-varying E field (D=E) can give rise to a H 

field, even in the absence of current

– Displacement often accounts for Common Mode CurrentsCommon Mode Currents

t
D




J E 
 

ConvectionConvection current density current density 
due to the motion of freedue to the motion of free--

chargescharges

ConductionConduction current current 
density in conductor                       density in conductor                       

(Ohm(Ohm’’s law)s law)

1





Speed of Light



Maxwell’s Equations - Electrodynamics
Something was Wrong… The Link Fixed

Maxwell’s Equations - Electrodynamics
Something was Wrong… The Link Fixed

• In the time-varying case, Maxwell initially considered the following 4 
postulates:

• Or in integral form:

• Displacement concept added:
• The only “real” contribution of J. C. Maxwell
• Supports EM radiation:

• Time varying E-field/Displacement produces time varying H/B-Fields
• Time varying H/B-Fields produce time varying E-field/Displacement 
• How does lightning current flow?
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Maxwell’s Equations - Electrodynamics
Radiation: Source-free Wave Equations

Maxwell’s Equations - Electrodynamics
Radiation: Source-free Wave Equations

• Assume a wave is traveling in a simple non-conducting 
source-free (=0) medium                           

• We therefore have: 

• Differentiating:

– The equations are coupled! Re-writing -

• but for a source free  environment:-
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Maxwell’s Equations - Electrodynamics
Radiation: Source-free Wave Equations

Maxwell’s Equations - Electrodynamics
Radiation: Source-free Wave Equations

• This results in a simple equation:
&

• EM Wave Velocity (speed of light):

• So, we obtain:

– Electric Field Wave Equation:

– Magnetic Field Wave Equation:

•• Radiation results from coupling of MaxwellRadiation results from coupling of Maxwell’’s Equations:s Equations:
–– AmpereAmpere’’s Laws Law
–– FaradayFaraday’’s Laws Law

2

2 0EE
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See?! See?! –– It is notIt is not thatthat complicated!complicated!
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Maxwell’s Equations - Electrodynamics
Radiation: Source-free Wave Equations

Maxwell’s Equations - Electrodynamics
Radiation: Source-free Wave Equations

• Electromagnetic waves can be imagined 
as a self-propagating transverse
oscillating wave of electric and magnetic 
fields

• This diagram shows a plane linearly 
polarized wave propagating from left to 
right

• The electric field is in a vertical plane, 
the magnetic field in a horizontal plane. 
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• A time-varying E-field
generates a H-field and 
vice versa
– An oscillating E-field 

produces an 
oscillating H-field, in 
turn generating an 
oscillating E-field, 
etc…

– forming an EM wave



Evolution of ElectrodynamicsEvolution of ElectrodynamicsEvolution of Electrodynamics

RelativityRelativity ElectrodynamicsElectrodynamics Circuit theoryCircuit theory



Application of Maxwell’s Equations 
to Real Life EMC Problems

Application of Maxwell’s Equations 
to Real Life EMC Problems

Good Ol’ Max’s Equations 

Path of Path of 
Current Current 
ReturnReturn

Twisted Twisted 
Wire Wire 
PairsPairs

Balanced Balanced 
Wire Wire 
PairsPairs

Return Return 
Current Current 
Flow on Flow on 

PCBsPCBs



Visualize Return Currents…Visualize Return Currents…

•• Currents always returnCurrents always return……
–– To ground??To ground??

–– To battery negative??To battery negative??

•• Where are they?Where are they?
–– They are all hereThey are all here…… flowing back to their source!!flowing back to their source!!
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Where will the return current flow?Where will the return current flow?

1( ) 0S S SI R j L I j M     

SL M

1

S S

S S

I j L
I R j L







1 1, S
g S

S

RI I I I
L

   

S
S g

S

RI I
L

  



• At LOWER FREQUENCIESLOWER FREQUENCIES, the current follows the path of LEAST LEAST 
RESISTANCERESISTANCE, via ground (Ig)
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Where will the return current flow?Where will the return current flow?

• At HIGHER FREQUENCIESHIGHER FREQUENCIES, the current follows the path of 
LEAST INDUCTANCELEAST INDUCTANCE, via ground (Ig)
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Where will the return current flow?Where will the return current flow?



Lower Frequencies Higher Frequencies

Where will the return current flow?Where will the return current flow?



Where will the return current flow?Where will the return current flow?

• Definition of Total Loop Inductance

• For I,B=constants,  min implies… A min 
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Balanced Wire PairsBalanced Wire PairsBalanced Wire Pairs
•• Single (infinitely long) wire (?) Single (infinitely long) wire (?) 

carrying currentcarrying current……
•• A closely spaced (infinitely long) A closely spaced (infinitely long) 

wire pair (signal and return)wire pair (signal and return)
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Twisted Wire PairsTwisted Wire PairsTwisted Wire Pairs
•• Regular balanced wire pair (loop)Regular balanced wire pair (loop)

–– Some magnetic flux cancellationSome magnetic flux cancellation
–– Still large loop areaStill large loop area Large Loop area without

Wire Pair TwistingSource Load

Loop
Area, A

I+
I-

Source Load

Smaller Loop area with
Twisting

Area Reduction
per Turn

I+
I-

Loop
Area, A'

•• Twisted balanced wire pair (loop)Twisted balanced wire pair (loop)
–– Some magnetic flux cancellationSome magnetic flux cancellation
–– Still large loop areaStill large loop area

 
  Pair in inB B B    

  



Return Current Flow on PCBsReturn Current Flow on PCBsReturn Current Flow on PCBs
•• Current flows in Trace & returning through planeCurrent flows in Trace & returning through plane

–– In reality, wave propagating in TIn reality, wave propagating in T--EE--M mode between trace to return M mode between trace to return 
planeplane

•• EE--Field (FaradayField (Faraday’’s Law)s Law)
•• HH--Field (AmpereField (Ampere’’s Law)s Law)

–– Return plane is VReturn plane is VCCCC or GNDor GND
•• DC potential irrelevantDC potential irrelevant

–– Boundary conditions prevail and dictate current distributionBoundary conditions prevail and dictate current distribution
•• EE--Field (GaussField (Gauss’’s Law)s Law)
•• HH--Field (AmpereField (Ampere’’s Law)s Law)

–– Any gaps in return planeAny gaps in return plane
produce discontinuitiesproduce discontinuities

–– Return current remainsReturn current remains
on surfaceon surface

•• EE--field cannot exist in metalfield cannot exist in metal
(Gauss(Gauss’’s Law)s Law)

•• Some current flows in metalSome current flows in metal
(Ohms Law in Materials)(Ohms Law in Materials)

•• Skin Effect in metalSkin Effect in metal
(Ampere(Ampere’’s and Faradays and Faraday’’s Law)s Law)
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Tangent
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E-Field FluxTrace
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dnE t



Return Current Flow on PCBsReturn Current Flow on PCBsReturn Current Flow on PCBs

•• In a differential pair of traces most return RF current flows inIn a differential pair of traces most return RF current flows in
plane and NOT in return conductorplane and NOT in return conductor
–– Same boundary conditions occurSame boundary conditions occur

•• Between each trace to return planeBetween each trace to return plane
•• Some interSome inter--trace coupling (weaker)trace coupling (weaker)

–– Same rules for trace routing should applySame rules for trace routing should apply
–– Crossing gaps will produce emissionsCrossing gaps will produce emissions

(Faraday(Faraday’’s Law & Amperes Law & Ampere’’s Law)s Law)
–– Differential characteristic impedanceDifferential characteristic impedance

primarily dominated by Traceprimarily dominated by Trace--PlanePlane
geometrygeometry

•• TT--EE--M propagation between M propagation between 
Each trace to PlaneEach trace to Plane
(Faraday(Faraday’’s Law & Amperes Law & Ampere’’s Law)s Law)

- Trace + Trace
Dielectric
Substrate
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SummarySummarySummary
•• The term Maxwell's equations nowadays applies to a set The term Maxwell's equations nowadays applies to a set 

of four equations that were grouped together as a of four equations that were grouped together as a 
distinct set in 1884 by distinct set in 1884 by Oliver HeavisideOliver Heaviside, in conjunction , in conjunction 
with with Willard GibbsWillard Gibbs

•• The importance of Maxwell's role in these equations lies The importance of Maxwell's role in these equations lies 
in the correction he made to in the correction he made to AmpAmp??re'sre's circuital lawcircuital law in in 
his 1861 paper his 1861 paper On Physical Lines of ForceOn Physical Lines of Force DH J
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–– Adding the Adding the displacement currentdisplacement current term to term to AmpAmp??re'sre's
circuital lawcircuital law enabling him to derive the enabling him to derive the electromagnetic electromagnetic 
wave equationwave equation in his later 1865 paper in his later 1865 paper A Dynamical A Dynamical 
Theory of the Electromagnetic FieldTheory of the Electromagnetic Field and demonstrate and demonstrate 
the fact that light is an the fact that light is an electromagnetic waveelectromagnetic wave

–– Later confirmed experimentally by Later confirmed experimentally by Heinrich HertzHeinrich Hertz in in 
18871887

•• Some say that these equations were originally called Some say that these equations were originally called 
the the HertzHertz--Heaviside equationsHeaviside equations but that Einstein for but that Einstein for 
whatever reason later referred to them as the whatever reason later referred to them as the 
MaxwellMaxwell--Hertz equationsHertz equations



SummarySummarySummary
MaxwellMaxwell’’s (8 !!!) Original Equationss (8 !!!) Original Equations

(A)(A) The law of total currents The law of total currents 
•• Conductive and displacement currentsConductive and displacement currents

(B) The equation of magnetic force (B) The equation of magnetic force 
•• Vector potential definition Vector potential definition 

(C) (C) AmpAmp??re'sre's circuital law   circuital law   
(D) EMF from convection, induction, and static electricity(D) EMF from convection, induction, and static electricity

•• This is in effect the This is in effect the Lorentz forceLorentz force
(E) The electric elasticity equation   (E) The electric elasticity equation   

(F) Ohm's law   (F) Ohm's law   

(G) Gauss' law   (G) Gauss' law   
(H) Equation of continuity (H) Equation of continuity 
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SummarySummarySummary

““From a long view of the history From a long view of the history 
of mankind of mankind -- seen from, say, ten seen from, say, ten 
thousand years from now thousand years from now -- there there 
can be little doubt that the most can be little doubt that the most 
significant event of the 19th significant event of the 19th 
century will be judged as century will be judged as 
Maxwell's discovery of the laws Maxwell's discovery of the laws 
of electrodynamics.of electrodynamics.
““The American Civil War will pale The American Civil War will pale 
into provincial insignificance in into provincial insignificance in 
comparison with this important comparison with this important 
scientific event of the same scientific event of the same 
decadedecade””

((Richard P. FeynmanRichard P. Feynman))



Maxwell's equations
The greatest equations ever

Maxwell's equationsMaxwell's equations
The greatest equations everThe greatest equations ever

•• Maxwell's equations of electromagnetism and the Maxwell's equations of electromagnetism and the 
Euler equation top a poll to find the greatest Euler equation top a poll to find the greatest 
equations of all time.equations of all time.

•• Although Maxwell's equations are relatively simple, Although Maxwell's equations are relatively simple, 
they daringly reorganize our perception of nature, they daringly reorganize our perception of nature, 
unifying electricity and magnetism and linking unifying electricity and magnetism and linking 
geometry, topology and physicsgeometry, topology and physics

•• They are essential to understanding the They are essential to understanding the 
surrounding world and as the first field equations, surrounding world and as the first field equations, 
they not only showed scientists a new way of they not only showed scientists a new way of 
approaching physics but also took them on the first approaching physics but also took them on the first 
step towards a unification of the fundamental step towards a unification of the fundamental 
forces of natureforces of nature



Epilog: Maxwell’s PoetryEpilog: MaxwellEpilog: Maxwell’’s Poetrys Poetry

James and Katherine 
Maxwell, 1869


