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Who's Afraid of Maxwell’s
Equations?

“From a long view of the history of
mankind - seen from, say, ten
thousand years from now - there can
be little doubt that the most
significant event of the 19th century
will be judged as Maxwell"s discovery

of the laws of electrodynamics”
(Richard P. Feynman)

The special theory of relativity owes
Its origins to Maxwell's equations of
the electromagnetic field

(Albert Einstein)

“Maxwell can be justifiably placed with Einstein and Newton
In a triad of the greatest physicists known to history”
(Ivan Tolstoy, Biographer)
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In the beginning..

 In the beginning, God created the Heaven
and the Earth . -

e ... and God Sald.

« And there was light!




Introduction

e Electromagnetics can be scary
— Universities LOVE messy math

e EM is not difficult, unless you want to do the
NESSYANE
— EM Is complex but not complicated
* Objectives: PR——
Intuitive understanding ;; |
Understand the basic fundamentals ﬂ_m_‘; ”
Understand how to read the math = j &
See “real life” applications




“May the Force be with You..”

Imagine, just imagine...

— A force like gravitation, but 2 103° stronger

— Two kinds of matter: “positive” and “negative”
— Like kinds repel and unlike kinds attract...
There Is such a force:

— For static charges (Coulomb’s Law)

- With a little imbalance between electrons and protons
body of a person - “the force” could lift the Earth

When charges are in motion, another force occurs:

o ’\:_._,”'“\ | I./. A\ =3
|

Lorenz's Law: F=q ( E +Vx B) VAR
Superposition of fields: s
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“May the Force be with You..”

« When current flows through a wire and a
magnet is moved near the current-carrying
wire, the wire will move due tof force exerted
by the magnet Eu = q(vx B)
— Current = movement of charges
- Magnetic fields interact with moving charges

& T0
+ TERMINAL
e

The force Is with you...




“May the Force be with You..”

e Current in the wires exerts force on the

magnet

— The magnetic force produced by the wire acts on the
static magnet (same as the field produced by a
magnet)

- Why does it not move?

e Make is light enough and it will
e Try a needle of a compass (you may check this at home...)




“May the Force be with You..”

e Two wires carrying current exert forces on
each other
— Each produces a magnetic field

— Each carries current on which the magnetic fields
act




What's All this Business about ‘them’ fields?

 Fields: Abstract concepts, a figment of imagination...

— A gquantity which depends on position in space
e e.g., temperature distribution, air pressure in space

- E and H fields are really tools to determme the force on
charged particles, 3 .

charges: E-fields

charges: H-fields

- Represent the force exertedona |
charge It does not disturb| -
(perturb) the position or motion of
nearby charges

e In general, fields vary and

are defined in space and time:

E=E(x,Y,zt)




Scalar and Vector Fields

 Fields can be scalar of vector fields

are characterized at each
point by one number, a scalar and may be Scalar Field
time-dependent Contours
e e.g., T(xy,z1t)
e Represented as contours
have, in addition to value, a
direction of flow and varies from point to
point
e e.g., flow of heat, velocity of a particle
e Represented by lines which are tangent to
the direction of the field vector at each
point
 The density of the lines is proportional
to the magnitude of the field

Vector Field




Scalar and Vector Fields

. A quality of “inflow” or “outflow”
from a volume

- e.g., flow of water from a lake into a river - ) 4 /

i\-&omponem erpendicular
~ Flux = the net amount of (something) going ok
through a closed surface per unit time, or:

- Flux = Average component normal to surface @

: The amount of rotational move,
or “swirl” around some loop H il

- e.g., flow of water in a whirlpool
— No physical curve need to exist, any ‘ !I
Imaginary closed curve will suffice Iy

— Circulation = Average component tangent to curve 2 distance
around curve

All electromagnetism laws are based on flux & circulation



Basic Vector Calculus
The Operator

 In the 3D Cartesian coordinate system with
coordinates (X, Y, z), del (V) is defined in terms of
partial derivative operators as:
20 20 0
V=l—+]—+ K —
oXx "oy oz
— i, J, k} is the standard basis in the coordinate system

— A shorthand form for “lazy mathematicians” to simplify many
long mathematical expressions

— Useful in electromagnetics for the
and

e Definition may be extended to an n-dimensional
Euclidean space




Basic Vector Calculus

The (Grad T)
. The
~of ~of ~oOf

Grad f (x,y,2)=Vf(X,y,Z)=1—+ | —+k—
rad f (x,y,2) (x,y,2) Iax+18y+ -

- Always points in the direction of greatest PR

: Contours . Vect_or Field
increase of f o Lines

- Has a magnitude equal to the maximum '
rate of increase at the point

e If ahill is defined as a height function
over a plane h(x,y), the 2d projection of
the gradient at a given location will be a
vector in the xy-plane pointing along the AN
steepest direction with a magnitude equal [ Hi?g;;‘;:fge” ““~~~..L°(ng;;ijgge”
to the value of this steepest slope




Basic Vector Calculus
The (Div: T)

- The

—

Div f(x,y,z)=V-f(xY,2)=

- Roughly a measure of the extent a
vector field behaves like a source or TR Diergencs
- - - —_7_ g”
a sink at a given point (outrlow") fro

More accurately a measure of the
field's tendency to converge

= ) 77 (11 \
a given volume s

CLOSED
I T the divergence is nonzero at some E
point, then there must be a source or
sink at that position




Basic Vector Calculus

The
- The

w&iﬁ

e Specifically:

. [ of .
(fo(x,y,z)):i( Y_@ij+j(5fx_@fz

ox oy

— Roughly a measure of a net
circulation (or rotation) density of a
vector field at any point about a
contour, C

e The magnitude of the curl tells us
how much rotation there is

e The direction tells us, by the right-
hand rule about which axis the field
rotates

07 OX

LoopT’




Vector

e Simply the
very small)

— Line Integral:
— Surface Integral:
e Volume Integral:

Integration

(when the parts are

sum along small line segments
sum across small surface patches
sum through small volume cubes




Line Integral

e Finding the sum of projection of the function T along

a curve, C

Afy = i AVES 8f—XAx
OX OX
In general:

(2)
f(2)—f(1)= [ (Vfeds)
(1)

Note that the actual path from
(1) to (2) is irrelevant

Curve C

Curve of Function, f

ds, “Small’ line element

Projection of
Function, f along
segment, As

Asy, “Small’ line element

Curve of Function, f




Line Integral around a Closed
Contour

e Closed line integrals find the sum of projection of the
function T along the circumference of the curve, C

f along contour C :<_f> feds
C

e This value Is not-necessarily




Surface Integral

Finding the sum of flux of the vector function flowing
outward through and normal to surface, S

8f ~ ofy,
Afn A Closed
5a 53. Squrf‘ace 3
of Function,

In general: Volune ¥ s
- 'surc;:,c;serre?r:”ent
Af, =(fen)Aa |

Note that n is the vector normal to the surface and the
direction of the surface vector a

Total outflow of f through S = j f .da)
Note: Outflow=Flux




Volume Integral

Finding a total quantity within a volume, V , given Its

distribution within the volume
Afy = X AV
oV

Note In practice this is typically
a value

//Fl
Af,,, per unit volume quantity
function in volume, V,

}

=<~ Infinitesimal Volume
element, AV




Divergence (Gauss) theorem

 Volume integral of the equals
through the surface that bounds the volume

Closed surface, S

Flux flowing out of the
/? .- /7 surface f

» The divergence theorem is thus a conservation law stating that the
volume total of all sinks and sources, the volume integral of the
divergence, is equal to the net flow across the volume's boundary

- Implying that for flux to occur from a volume there must be sources
enclosed within the surface enclosing that volume

— The flux from the volume diminishes whatever was within that volume,
IT its conservation must occur




Stokes’ theorem

e Surface integral of the over an
open surface is equal to the
along the contour bounding the surface

Flux flowing along the
contour, f

Closed contour,

 Implying that certain sources create circulating flux in
a plane perpendicular to the flow of the flux




Curl-Free Fields

o If everywhere inspace Vxf =0 it follows from
Stokes’ theorem that the circulation must also be zero

js(vx?).dazcjsc?-dgzo

« Therefore, regardless of the path:
2 o
| feds=—| feds

(1) (2)
 Therefore, the integral depends on position only

 The field, f, must be a gradient of this potential,

e Thus.. VX(VV)EO
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Maxwell’s Equations




Laws of Electromagnetism, 1

 Flux of E through a closed surface = net charge inside
the volume

V.E L

Net flux

No net flux

— If there are no charges inside the volume, no net charge can
emerge out of it

— Adjacent charges will create flux, which enters and leaves the
volume, producing zero net flux




Laws of Electromagnetism, 2

e Circulation of E around a closed curve = net

change of B through the surface _ B
- = VxE = —%

— If there are no magnetic fields, or only static
magnetic fields are present, the circulation is zero

Only magnetic fields flowing through the surface

will produce circulation S AUl
through surface B
\ . Magnetic field

“Going to the south and @@3 \, outside surface

circling to the north the wind
goes round and round; and
the wind returns on its
circuit”

(Ecclesiastes 1:6)




Laws of Electromagnetism, 3

 Flux of B through a closed surface =0
VeB=0

— There are no magnetic charges




Laws of Electromagnetism, 4

e Circulation of B around a closed curve = net

change of E or flux of current through surface
VxH ZJ—I—a—D; B=uH
ot
— Only net current or change of E-field through
surface produces ~ No Current
circulation of B

J through Surface

No change of E

. . __ through Surf
All the rivers flow to the sea, g onon SUIAsE,

but the sea Is not full”
Curent | esiastes 1:7)

Net change of E

Magnetic Flux d /f through Surface Net Current
Density, B through Surface




Electrostatics and Magnetostatics

e In electrostatics and magnetostatics, fields are
Invariant

Ve-D=p

VXE =0

(0p)
o
=
q0]
=
(0p)
@)
| -
+—J
(&)
0
il

VB =0

VxH=J

Magnetostatics

 The equations
e E-field and H-field of each other




Electrostatics

Electrical Scalar Potential
e If VxE=0 we can define E =-VV

- The (scalar) electrostatic potential
- The E-field can be computed everywhere from the potential

e The physical significance: The potential energy which a
unit charge would have If brought to a specified point
(2) In space from some reference point (1):

- Work: (2) (2) (2)
W :—j E-dgz—q[j E-d§] :—q[ j VV-d§]:>
@) 1) @)
Path #1

q A L
— Independent of path taken, thus Cﬁ E.ds=0 75
Path #2 E




Magnetostatics
Conservation of Charge

Current must always flow in closed loops:

VxH:J+@

Taking the Divergence...

—

VeV x H =v-£5+@ =

ot
ut.. VeVxH =0 so..

In magnetostatics 6_D —0=Ve] =0

ot

so current must flow in closed loops! o
7\dV = ob 0P \ gy -9 _
o o[ ot (o

...:CJSSE-da: I




Kirchhoff's Laws

e Kirchhoff's Equations are approximations
— No time-varying fields (c/D/ct=0, cB/t=0)
— Electrically small circuits
— Quasi-static approximations apply

Conservation of Difficulty

“Things should be made as simple as
possible, but not any simpler * {( \}
(Albert Einstein) 4




Kirchhoff's Current Law (KCL)

e An approximation from Ampere’s Law

« When
present (electrostatics)

oD

ot




Kirchhoff's Voltage Law (KVL)

e When
present (magnetostatics)

a_B=0:><j>E-dT=Zuzi—Um=0
@

ot

Contour -C




Maxwell’'s Equations — Electrodynamics




Maxwell’'s Equations — Electrodynamics
Something is Wrong Here... The Missing Link

 In the time-varying case, Maxwell initially considered the
following 4 postulates:
_ 0B
VxE=-— (1)
ot

V-D=p ©)

e Orinintegral form

<_[>Ed|——<j>—da (1) <j>SH‘-dT=

§.D-da=Q ©) ¢, B-da=0

e But some things seemed wrong:
« What if the circuit contained a capacitor...?

« How could electromagnetic radiation occur?




Maxwell’'s Equations — Electrodynamics
Something I1s Wrong Here...
Taking Divergence of (2)
Veo(VxH) = V]
But from the null identity ... Ve(V x |:| _ V-j:()

This appears to be inconsistent with the principle of
conservation of charge and the Equation off Continuity:

Therefore, this equation had to be modified...

v (from Gauss Law)

V-(VXH)—%Zv-j or Ve(VxH)=Vsl+

Hence J.C. Maxwell proposed to change (2) to:




Maxwell’'s Equations — Electrodynamics
Something Is Wrong Here...

—

oD
« Maxwell called the term FT displacement current
density

— showing that a time-varying E field (D=cE) can give rise to a H
field, even in the absence of current

—_

+okE

P

Conduction current
density in conductor
(Ohm’s law)

— Displacement often accounts for Common Mode Currents




Maxwell’'s Equations — Electrodynamics

Something Wrong...

In the time-varying case, Maxwell initially considered the following 4
postulates: _

- OB
VxE=-— (1) 2)

V-D = p © (4)

Or in integral form:

j.da (2)

(4)
Displacement concept added:
« The only “real” contribution of J. C. Maxwelli
e Supports EM radiation:
e Time varying E-field/Displacement produces time varying H/B-Fields

e Time varying H/B-Fields produce time varying E-field/Displacement
e How does lightning current flow?




Maxwell’'s Equations — Electrodynamics

. Source-free Wave Eguations
Assume a wave Is traveling in a simple non-conducting
source-free (6=0) medium J=0,p=0 5
We therefore have: VxE =1 oH ViH s E

ot ot

V+E =0

: — - 0
Differentiating:V xVxE = H

— The equations are coupled! Re-writing - 52E
VxVxE+ U=

51:2
but for a source free environment:-

—_ —_

VxVxE=V( )-V’E=V( )-V’E=-V°E




Maxwell’'s Equations — Electrodynamics
. Source-free Wave Eguations

e This results in a simple equation: .
_ _ _ _ O°E
VxVxE=V(V-E)-V?E=-V’E  VxVxE+ —==0
e EM Wave Velocity (speed of light):
V =

e S0, we obtain: )
o | y= 1 0°E
~ Electric Field Wave Equation: V°E ——2? =0 Homogeneo

Vl 25 UsS vector
- Magnetic Field Wave Equation: V2H - =X0) wave

2 2 .
Ve ot equations




Maxwell’'s Equations — Electrodynamics
. Source—firee Wave Eguations

e Electromagnetic waves can be imagined
as a self-propagating
oscillating wave of electric and magnetic
fields

9, 9,
= - _ V = & —
Moot ot

This diagram shows a plane linearly « A time-varying E-field

polarized wave propagating from left to  generates a H-field and

right vice versa

— An oscillating E-field
produces an
oscillating H-field, in
turn generating an
oscillating E-field,
etc...

— forming an EM wave

The electric field is in a vertical plane,
the magnetic field in a horizontal plane.




Evolution of Electrodynamics




Application of Maxwell’'s Equations
to Real Life EMC Problems

Twistad
Wire
Palrs

Ny e




Visualize Return Currents...

e Currents always return...
— To ground??

— To battery negative??

Laak

e \Where are they?

— They are all here... flowing back to their source!!




Where will the return current flow?

ls-(Rs + Jols) =1, - joM =0

L =M

I Jolg

S__J7=
l, R+ jol

Rs

l, <<l s >, S o>—

s>, 0>

v

-

Asymptotic

Current Ratio

Frequency (o)




Where will the return current flow?

« At LOWER FREQUENCIES, the current follows the path of LEAST
RESISTANCE, via ground (1)

w—0

Z=Rg+jo-M =

kot Guion

e At HIGHER FREQUENCIES, the current follows the path of
LEAST INDUCTANCE, via ground (1)

Z=R,+jo-M =

w»o{|2|st @R, >> jo L




Where will the return current flow?

RF Signal Coaxial Cable

Generator .
I L L ' o o0
_ Current Spectrum Analyzer
Signal Output Probe Coaxial Cable
Coaxial
Coaxial
Copper Strap Terminator

"U-Shaped"
Semi-Rigid
Coaxial Jig

- | = &
|‘ ] .]_ﬂl_'_l_:_‘__h_.

[5] EE (-[=
(=] =

| E




Where will the return current flow?

S Agilent 155301 Way 5, 2003 L i Aglent  16:24:06 May 5, 2003 [i
Mkr1 256 kHz Mixt 200 kHz

Hef 107 dB Atten 10 dB 6931 dB Ref 72.49 By #flen 15 dB 64.43 dByy
Peak Peak

Loy Leg
f0 4

dBf di/ ’&r
|
| :

Lower Frequencies _| Higher Frequencies
A . T 1

Start 1 kHz Stop 1 MHz Start 1 kHz Stop 10 MH:z
#Res BW 3 kHz WO 3 kHz Swweep 277.5 ms {01 pis) #Res BW 30 kHz WEUY 30 kiz FSweep 500 ms [01 pi)




Where will the return current flow?

e Definition of Total Loop Inductance

e For I,B=constants, @ ;. implies... A

VxH = j+@
ot

Currentl/|

dea

I
ThUS. Lm ¢m|n <:>'A?nin




Balanced Wire Pairs

e« Single (infinitely long) wire (?) ¢ A closely spaced (infinitely long)

carrying current... wire pair (signal and return)
B+out B—in

e
. + .+ +
- +

Signal Conductor
N -

+ + £
+ + + +

Magnetic Fields

+ + + 4+ 5w
+ + + +

N -
Return Conductor

—(ng):j+@:§:

:
ot

Remember
Lower B - Lower E > Lower S

u




Twisted Wire Pairs

e Regular balanced wire pair (loop)
— Some magnetic flux cancellation
— Still large loop area

« Twisted balanced wire pair (loop)
— Some magnetic flux cancellation

— Still large loop area

BECOBEE

S

gPair — §+ in(/ﬁ—g— in(D




Return Current Flow on PCBs

Current flows In Trace & returning through plane

— In reality, wave propagating in T-E-M mode between trace to return
plane
 E-Field (Faraday's Law)
e« H-Field (Ampere's Law)
Return plane is V.. or GND
e DC potential irrelevant
Boundary conditions prevail and dictate current distribution
 E-Field (Gauss's Law)
e« H-Field (Ampere's Law)
Any gaps In return plane
produce discontinuities Tangent o
Return current remains H-Field Flux RS S E-Field Flux
on surface He (1) g a8

e E-field cannot exist in metal
(Gauss'’s Law) Sl

e Some current flows in metal
(Ohms Law in Materials) Dielectric

e Skin Effect in metal Substrate
(Ampere’s and Faraday's Law)




Return Current Flow on PCBs

e In a differential pair of traces most return RF current flows in
plane and NOT In return conductor

— Same boundary conditions eccur
» Between each trace to return plane
e Some inter-trace coupling (weaker)

Same rules for trace routing should apply

Crossing gaps will produce eMmISSIONS  Tangent H-Field Flux Normal E-Field Flux
(Faraday’s Law & Ampere’s Law) Ho () He(t) D, (t) Dy (1)
Differential characteristic impedance

primarily dominated by Trace-Plane
geometry

 T-E-M propagation between - EEDFTEE 00 WS

Dielectric

Each trace to Plane Substrate fl'}.'ﬂ"w{" ‘37"'.““{%
\

|\
(Faraday’s Law & Ampere’s Law) Filgﬁl“A.ﬂﬁ;ﬁ
pOe A DB < 4

l;:O D';nEO Om =%

Dt (t)

Return Plane (V../GND)




Summary

« The term Maxwell*s eguations nowadays applies to a set V.ﬁ =p
of four equations that were grouped together as a
distinct set in 1884 by Oliver Heaviside, in conjunction  v7,B — ()
with Willard Gibls

The importance of Maxwell*s role in these equations lies V/ x E =
in the correction he made to Amp?re®s circuital law in
his 1861 paper On Physical Lines of Force

— Adding the displacement current term to Amp?re’s
circuital law enabling him to derive the electromagnetic
wave equation in his later 1865 paper A Dynamical
Theory of the Electromagnetic Field and demonstrate
the fact that light is an electromagnetic wave A,

Later confirmed experimentally by Heinrich Hertz in PHILOSOPHICAL MAGAZINE

AND

1887 JOURNAL OF SCLENCE.

S—

Some say that these equations were originally called [xoURTE SERIES)

the Hertz-Heaviside equations but that Einstein for uazox oo,

XXV, Ou Phusivel Lin By I C. Maxwrewr, Pro-
Lo

whatever reason later referred to them as the ey Filty & 5 G
Maxwell-Hertz equations e e s o e

badiss, we have
T




Summary

Maxwell’'s (8 'I) Original Equations

(A) The law of total currents jTotal —J +@
e Conductive and displacement currents ot
(B) The eguation of magnetic force Hﬁ' —V x ,_A\'
e« \Vector potential definition

(C) Amp~?re”s circuital law VxH = ‘JTotaI

(D) EMF from convection, induction, and static electricity oA
« This is in effect the Lorentz force uvxH ——-—-Vo
(E) The electric elasticity eguation at

(F) Ohm"s law

(G) Gauss”® law
(H) Equation of continuity




Summary

“From a long view of the history
of mankind - seen from, say, ten
thousand years from now - there
can be little doubt that the most
significant event of the 19th
century will be judged as
Maxwell®s discovery of the laws
of electrodynamics.

“The American Civil War will pale
Into provincial insignificance In
comparison with this important
scientific event of the same
decade”

(Richard P. Feynman)




Maxwell®s equations
T he greatest eguations ever

« Maxwell*s equations off electromagnetism and the
Euler eguation top a poll to find the greatest
equations of all time.

e Although Maxwell®s eguations are relatively simple,
they daringly reorganize our perception off nature,
unifying electricity and magnetism and linking

geometry, topology and physics

They are essential to understanding the
surrounding world and as the first field eguations,
they not only showed scientists a new way of
approaching physics but also took them on the first
step towards a unification of the fundamental
forces of nature




Epilog: Maxwell’s Poetry

A Problem in Dynamics

An inextensible heavy chain

Lies on a smooth horizontal plane,
An impulsive force is applied at A,
Required the initial motion of K.

Let ds be the infinitesimal link,

Of which for the present we've only to think;

Let T be the tension, and T + dT

The same for the end that is nearest to B.

Let a be put, by a common convention,

For the angle at M twixt OX and the tension;

Let WVt and Vn be ds’'s velocities,

Of which Vvt along and Vn across it is;

Then Vn/Vt the tangent will equal,

Of the angle of starting worked out in the sequel.

In working the problem the first thing of course is
To equate the impressed and effectual forces.

K is tugged by two tensions, whose difference dT
Must equal the element's mass into Vt.

Vn must be due to the force perpendicular

To ds’s direction, which shows the particular
Advantage of using da to serve at your

Pleasure to estimate ds’'s curvature.

For Vn into mass of a unit of chain

Must equal the curvature into the strain.

James and Katherine
Maxwell, 1869

Thus managing cause and effect to discriminate,

The student must fruitlessly try to eliminate,

And painfully learn, that in order to do it, he

Must find the Equation of Continuity.

The reason is this, that the tough little element,
Which the force of impulsion to beat to a jelly meant,
Was endowed with a property incomprehénsible,

And was "given,” in the language of Shop, "inexten-sible."”
It therefore with such pertinacity odd defied

The force which the length of the chain should have modified,
That its stubborn example may possibly yet recall
These overgrown rhymes to their prosody metrical.
The condition is got by resolving again,

According to axes assumed in the plane.

If then you reduce to the tangent and normal,

You will find the equation more neat tho' less formal.
The condition thus found after these preparations,
When duly combined with the former equations,

Will give you another, in which differentials

(When the chain forms a circle), become in essentials
No harder than those that we easily solve

In the time a T totum would take to revolve.

Nowd’oyfullv leaving ds to itself, a-
Ttend to the values of T and of a.

The chain undergoes a distorting convulsion,
Produced first at A by the force of impulsion.

In magnitude R, in direction tangential

Equating this R to the form exponentiaﬂ,

Obtained for the tension when a is zero,

It will measure the tug, such a tug as the "hero
Plume-waving" experienced, tied to the chariot.
But when dragged by the heels his grim head could not carry aught,
So give a its due at the end of the chain,

And the tension ought there to be zero again.
From these two conditions we get three equations,
Which serve to determine the proper relations
Between the first impulse and each coefficient

In the form for the tension, and this is sufficient
To wark out the problem, and then, if you choose,
You may turn it and twist it the Dons to amuse.

James Clerk Maxwell




